網路安全家具 正妹護士水鑽 品味生活鞋館 旅遊台中豐年駕訓班 姪女LED燈管
0.999…229 KB無標題名稱: 無名氏 [09/11/12(四)00:36 ID:5tKqz1N2] No.93745 "人類的科學技術永遠無法超越人類的想像力"這句話幾乎可以視為定律?無標題 名稱: 無名氏 [09/11/12(四)00:44 ID:J.Yrruz6] No.93748 發現新事物-->聯想-->啟發創意不是超不超越的問題,是思維上的刺激能不能引起更大想像空間無標題 名稱: 無名氏 [09/11/12(四)21:01 ID:1wRmXJqY] No.93888 想像力是你的超能力!!!根據原PO的說法......故得証:科學無法超越超能力!恩.........看著某魔法目錄...沒錯啊~有什麼疑問嗎?無標題 名稱: Christmas [09/11/12(四)21:27 ID:peQwVtVQ] No.93895 我的看法是:當 科學:0 想像力:1 (原始人)如同 >>93748 所說的一樣發現新事物-->聯想(基於有想像力)-->啟發創意(科學)因此: 科學:1(+1) 想像力:1(進入石器時代)發現新事物-->聯想(基於有想像力)-->啟發創意(科學)因此: 科學:2(+1) 想像力:1(進入青銅器時代?)基於科學是可累積的,所以科學技術超越了想像力.也可以用"古人無法想像飛機的存在一樣"所以可以說明"人類的科學技術永遠無法超越人類的想像力" 不成立無標題 名稱: 無名氏 [09/11/12(四)23:16 ID:NmPUU53w] No.93915 >93895你的論調怪怪的為何想像力無法累加 而且為何拿不同時代在比較真要說的話 在古人能想像飛行時 飛行器還做不出來耶以現代來論 空間跳躍是能想像的 但是以現在的科技連完整的理論都沒有故流言證實無標題 名稱: 無名氏 [09/11/13(五)00:03 ID:QI3oEx8A] No.93920 在互聯網出現前,沒有人或任何一本科幻小說可以想像到今天的資訊爆炸的情況..故流言終結無標題 名稱: 無名氏 [09/11/13(五)00:06 ID:WWaykVzI] No.93921 差不多人類的想像力本來就是科技進步的原動力之一無標題 名稱: 無名氏 [09/11/13(五)00:21 ID:A8JLztgw] No.93923 這一代的科技會孕育出下一代的想像力這一代的不可能對下一代可能變成理所當然進而繼續往上以現有的技術構築新的想像力如果把每一代人類看做一個整體科學技術的確永遠無法超越人類的想像力想像(構思/假說)是需要刺激的 名稱: 無名氏 [09/11/13(五)00:52 ID:/3rOb3V.] No.93930 以現知的大腦結構看來,人類的大腦可以產生的假設與想像確實沒有辦法達到"認知上的極限",所以人類的想像一定可以凌駕於物質與技術發展,這點在學術界已經由哲學術學證實.然而想像不會憑空產生,現實中的刺激可以刺激出不同的反應,產生不同的想像,盡一步會有顛覆性的,有別於當代的多元想像出現.打個比喻:在科幻小說誕生以前,就已經有人類書寫飛行器與光武器的小說了.但是在科技進步到飛機,雷射成了普遍的物品時,科幻小說的科幻想像就越來越接近具體,也開始往宇宙世界的空想發展.一千年前的古人大腦可以想出宇宙船嘛?一定可以,但是根本沒有這種"刺激"出現....因為對於那個時代的人來說,飛行(小鳥)的刺激遠比看不見沒有證實的宇宙來的更具體無標題 名稱: Christmas [09/11/13(五)11:46 ID:WPW7m/Qc] No.94001 >>93915 根據小的愚見,小的認為想像力無法累加的原因是想像力是利用思維上的想像空間來啟發創意(科學)是一步一步的如科幻小說光學武器如果沒有光學慨念就不會有"光學"武器也為何我會拿不同時代在比較因為科學要用很長的時間來開發在小說家兩三天寫作出來的科幻小說你可知道,如此同時甚至更早的時間科學家其實也在研究&開發但研究&開發,當然不會是兩三天就完成好的也造成科幻小說中的東西變為真的誤解想像力是1,所以科學永遠都是+1的也為何原始人不可能直接跳到青銅器時代>>93930 你所說古人有想出宇宙船一定是根據你看過馬雅遺跡上神秘的宇宙船壁畫才說的吧但你又知不知道只有馬雅才有這神秘的壁畫嗎你又知不知道為何馬雅如此神秘因為考古學家認為馬雅有超科技他們可能是上一個文明,有宇宙船不出為奇但如果你問我其他古人有沒有想出宇宙船?我可以說是沒有無標題 名稱: 無名氏 [09/11/13(五)16:32 ID:ywaKtGHU] No.94047 反過來說有些科學技術已經成為現實大眾卻無法想像這又是怎麼回事呢?無標題 名稱: 無名氏 [09/11/13(五)17:32 ID:xD5ivn2Q] No.94055 要是趕上了的話~我想像世界毀滅,世界就毀滅囉=0=無標題 名稱: 無名氏 [09/11/15(日)19:11 ID:Av.Wu5fY] No.94474 >>No.94047就他們沒學過啊~ = =無標題 名稱: 無名氏 [09/11/15(日)20:04 ID:ypwpAfdY] No.94487 >>No.94474我能理解就像有些低能永遠無法理解0.99...=1無標題 名稱: 無名氏 [09/11/15(日)22:37 ID:IBwBdxqA] No.94521 唐朝推背圖第56象:飛者非鳥 潛者非魚戰不在兵 造化游戲無標題 名稱: 無名氏 [09/11/15(日)23:33 ID:aHLdGQSM] No.94537 >>No.94487說真的0.99...=1我也只是了解那是因為極限值的關係,但是並不能完全理解要靠著特殊算法才能算對的解釋是正確的就像你在求學大部分時期(國小國中高中)把2-1=1寫成2-1=0.99....教師一定給你錯一樣無標題 名稱: 無名氏 [09/11/16(一)00:07 ID:XNbEKNgc] No.94544 檔名:1258301252265.jpg-(2 KB, 155x105) [以預覽圖顯示] 2 KB>>No.94537其實最簡單的答法是:(0.33...)只是1/3的大約值,略小於1/3所以3x(0.33...)=(0.99...),只能無限接近於1(取決於你的(0.33...)有多接近1/3)事實上不論n有多大,附圖的算式還是不等於一只是無限接近1無標題 名稱: 無名氏 [09/11/16(一)00:20 ID:.Ggsc7pE] No.94548 >>No.94537>2-1=0.99....教師一定給你錯一樣以前高中就這樣寫過一次,老師也給對不知道為什麼有人不能理解,一個數字有兩種以上寫法有這麼困難?如果你能接受2/3和4/6是相等的為何不能接受1和0.999...是相等的?>>No.94544你問你的數學老師看看0.33...是等於還是約等於1/3我猜他會哭出來就是無標題 名稱: 無名氏 [09/11/16(一)00:27 ID:.Ggsc7pE] No.94551 >>No.94537說真的 我不知道什麼叫特殊算法用人類所定義的前提來提出一段嚴謹的證明以說明1=0.99..如果你要說1=/=0.99...,就請用數學式子提出證明哪裡錯誤或是提出一段1=/=0.99...的證明像94544的前提根本完全錯誤無標題 名稱: 無名氏 [09/11/16(一)01:12 ID:xpfKl.T2] No.94557 >>No.94544因為在兩者間找不到比0.99...更接近1的數故0.99...等於10.33...與1/3同理無標題 名稱: 無名氏 [09/11/16(一)01:36 ID:JGITaKYM] No.94564 0.99...=1這老梗又是哪個腦子從頭到尾只有這個的廚提出來的媽的沒別的事情好學了嗎只會在這種非數學課的地方婊某些根本對數學沒有興趣或沒啥概念的人管你怎樣講 他們哪鳥你只會一直自high管你是不是數學菁英到大眾的地方就乖乖有正常人的樣子不要在那一臉geek樣拿這一百零一招在那用這根本跟 說dog跟狗是一樣的東西然後開始有人跟你吵 你就在那該該叫一樣無標題 名稱: 無名氏 [09/11/16(一)08:21 ID:XNbEKNgc] No.94584 >>No.94548>>你問你的數學老師看看0.33...是等於還是約等於1/3>>我猜他會哭出來就是當"3"的數量接近無限時,0.33...就等於1/3但如果說的是這個「無限個3組成的0.33...」那94544的附圖算式就可用「n接近無限大」來計算直到那時,0.99....才是真正等於1沒讀過高等數學,只是小學中學稍微聽老師講講就不經思考地拿來吼人的廚就退散吧無標題 名稱: 無名氏 [09/11/16(一)09:48 ID:htUwCo.U] No.94595 >No.94487 死廚滾啦~~流言終結版應該要多加一條不准討論任何1=0.999...的條目每次都有白癡拿出來討論無標題 名稱: 無名氏 [09/11/16(一)11:24 ID:n02man8k] No.94614 1=0.9999....?1>0.9999....?無標題 名稱: 無名氏 [09/11/16(一)17:51 ID:12FFkZcw] No.94677 想像力不是科學或技術的限制宗教和政治才是無標題 名稱: 無名氏 [09/11/16(一)19:05 ID:ZOtnaVl2] No.94693 簡單說一下吧2-1=0.9(循環,循環點不好寫,將就一下) << 寫這個的人是自high&教師有權給0分把0.9(循環)寫成1作答案/便於運算也煩請你加上(取整數),否則教師還是有權給0分畢竟0.9(循環)的確不等於1無標題 名稱: 無名氏 [09/11/16(一)19:46 ID:ncMQW3vQ] No.94701 http://en.wikipedia.org/wiki/0.999...不過答案是1時請寫成1,不要自high>>No.946930.9(循環)等於1數?上是同一點無標題 名稱: 無名氏 [09/11/16(一)20:06 ID:.Ggsc7pE] No.94706 >>No.94701貼這個沒用的主張1=/=0.99..的人根本看不懂無標題 名稱: 無名氏 [09/11/16(一)20:49 ID:wdi2y.yI] No.94713 >>No.94693 說明個鬼自己的數學也爛就別裝聰明在說明我老實跟你說,0.9(循環)就是1這是任何一個有初中數學能力及正常智力的人都知道的事實你會搞錯,是因為你缺乏後一個條件還有就是,你的數學老師在哭了無標題 名稱: 無名氏 [09/11/16(一)23:11 ID:IpsaK5Pw] No.94738 >>No.94693 如果你的老師有權給你0分我想我也有權給你老師0分...無標題 名稱: 無名氏 [09/11/16(一)23:30 ID:xpfKl.T2] No.94742 >>No.94693請去查一下吧http://lmgtfy.com/?q=0.999%E2%80%A6如果你的老師能夠找到比0.9(循環)更接近1的數他就有權給你0分,不過這是不可能的畢竟0.9(循環)的確等於1無標題 名稱: 無名氏 [09/11/17(二)00:18 ID:1NPIoReg] No.94756 >http://zh.wikipedia.org/zh-tw/0.999%E2%80%A6維基裡的說明啊......講這麼多其實只要看「2.2.3 位數操作」的部份就足以了解為何無限循環0.999...==1了看完再看「4 教育中遇到的懷疑」和「5 在大眾文化中」XD無標題 名稱: 無名氏 [09/11/17(二)00:50 ID:Sl1R/BMI] No.94759 >>No.94756重點是數學家認定的無標題 名稱: 無名氏 [09/11/17(二)00:58 ID:F2saJSjE] No.94761 >>No.94759所以你覺得你的能耐比那些數學家強嗎?還是那句話有本事就寫出一段證明來證明0.99... =/= 1不然就請閉嘴無標題 名稱: 無名氏 [09/11/17(二)06:05 ID:lZWhx5xU] No.94769 >重點是數學家認定的重點是農夫才認定種米會長米﹐只要我認定種米會長麥子就會長麥子你就是這種腦殘吧﹖無標題 名稱: 94701 [09/11/17(二)09:46 ID:zgPRAGrw] No.94783 檔名:1258422397620.jpg-(10 KB, 410x295) [以預覽圖顯示] 10 KB你看!很簡單吧!無標題 名稱: 無名氏 [09/11/17(二)11:01 ID:vJkzhp26] No.94786 炸藥的發明 不就是個超乎想像的事件?無標題 名稱: 無名氏 [09/11/17(二)11:26 ID:aQspBisI] No.94789 >>No.94786你離題了...無標題 名稱: 無名氏 [09/11/17(二)11:47 ID:bZzOs0mo] No.94792 >>No.947831x4=1喔你真會除5-1=1喔你真會減無標題 名稱: 94701 [09/11/17(二)12:08 ID:zgPRAGrw] No.94795 >>No.94792只是寫錯...orz無標題 名稱: 無名氏 [09/11/17(二)13:07 ID:3XgkQIMw] No.94801 這些到底跟原PO問的有何關係阿....無標題 名稱: 無名氏 [09/11/17(二)14:20 ID:qghwT3oU] No.94813 http://www.tudou.com/programs/view/Dq35wTIdX7Q無標題 名稱: 無名氏 [09/11/17(二)14:43 ID:9yLr4iMM] No.94821 說到0.999...和1的關係,就讓我想到當初接觸等比數列的時候。那時剛學會怎麼把有理小數換成分數,試了好幾個小數,求出的分數都可以再變回小數,覺得很好玩。悲劇就在這時候發生了(?)當試到0.999...的時候,得不到可以變回0.999...的分數。感到很疑惑,問了老師,老師冷冷回答︰「根據等比數列公式,答案是1。」忽然電光一閃,當下震驚不已,久久不能自己...無標題 名稱: 無名氏 [09/11/17(二)18:28 ID:sHwism.s] No.94853 大一那年教授第一堂課,上面說了「0.9循環不等於1。」台下學子莫不恐慌萬分。教授又說「誰敢在考卷上寫0.9循環等於1的當他。」全班譁然,不能自已,直到教授這麼解釋。「你們現在這些大學生,什麼都沒準備就來上數學系了,說不定還有人是剛好填進來的,什麼基本概念都沒有,把0.9循環小數當成1還當的理所當然,這樣怎麼行?如果要在我的考卷上把0.9循環寫成1,就給我把証明寫出來。」第一堂課,教授狠狠的鞭了我們一頓......無標題 名稱: 無名氏 [09/11/17(二)19:14 ID:/MdB/ZX2] No.94863 1=0.991+1=2=0.99+0.991+1+1=3=0.99+0.99+0.99加的數越多 誤差越大無標題 名稱: 無名氏 [09/11/17(二)19:21 ID:oQJ8oCaM] No.94866 可是他們說的是0.9循環無標題 名稱: 無名氏 [09/11/17(二)19:24 ID:/MdB/ZX2] No.94868 >>No.94866說的也是不過0.99的循環總是要+0.00000000(無限)1才能變1吧無標題 名稱: 無名氏 [09/11/17(二)20:06 ID:KBeUby1A] No.94879 >>No.94868老問題去上大一微積分課那0.0~01是無限近似於0的0.9~99也因此無限逼近於1無標題 名稱: 無名氏 [09/11/17(二)20:18 ID:nwsFw/6c] No.94881 >>No.94853 1. 別說謊造謠,這裏是流言終結版2. 如果你堅持那是真人真事,不妨把那個教授的名稱/大學校名公開出來,讓他從此身敗名裂也好無標題 名稱: 無名氏 [09/11/17(二)20:22 ID:Mp6zEsVI] No.94884 >>No.94881不是說謊造謠吧?重點是在說不要知其然而不知所以然......無標題 名稱: 無名氏 [09/11/17(二)20:25 ID:nwsFw/6c] No.94886 >>No.94884 一個讀數學的大學生不能隨手寫出一個0.9999... = 1的證明,那他的數學被當也是理所當然的而一個教數學的教授夠膽在課堂上說出"0.9循環不等於1"這種蠢話,那他被開除也是理所當然的同樣,當一個小朋友不懂"0.999...=1"這事實,卻硬要掰一段經歷出來唬爛人,那把他當成說謊造謠的人也是理所當然的無標題 名稱: 無名氏 [09/11/17(二)20:30 ID:NcCh7hN.] No.94887 >>No.94853可以反問那個教授1+1/2+1/4+1/8+1/16+....=2你會寫多少請堅持己見阿教授不過因為0.999...=1這個算式是禁句所以..無標題 名稱: 無名氏 [09/11/17(二)20:33 ID:9yLr4iMM] No.94888 >>No.94887會證0.999...=1的話,1+1/2+1/4+1/8+1/16+....=2也一定證得出...無標題 名稱: 無名氏 [09/11/17(二)20:42 ID:SuR1m7eg] No.94890 >>No.93745要證明0.9循環=\=1不是因為0.99+0.01=1又0.999+0.001=1所以0.9(循環)+0.0(循環)1=1故0.9(循環)=\=1不是這樣嗎?還是我理解錯了?無標題 名稱: 無名氏 [09/11/17(二)20:46 ID:9yLr4iMM] No.94891 >>No.94890因為0.9...的0.9後面永遠有9可以用,在碰不到需要0.0...1的情況下,也就是和1沒有兩樣。0.0...1的0.0後面永遠有0,也就是永遠也碰不到那個1,所以和0沒有兩樣...無標題 名稱: 無名氏 [09/11/17(二)20:49 ID:kboVvMok] No.94892 >>No.94890聽說 還要限定單位(看不懂 不過設定相當嚴謹 寫了好幾張紙)無標題 名稱: 無名氏 [09/11/17(二)20:54 ID:SuR1m7eg] No.94894 >>No.94891我的數學老師哭了..不過a+b=c除非b=0不然a永遠不等於c不是嗎只要b=0.0(循環)10.9(循環)永遠不等於1不是嗎?只能說0.9(循環)接近1而以ps.因為我真的不懂..還是有人要寫證明0.9(循環)=1的證明式?無標題 名稱: 無名氏 [09/11/17(二)21:02 ID:9yLr4iMM] No.94895 >>No.94894你的數學老師當然要哭...請看前面別人提供的連結http://zh.wikipedia.org/zh-tw/0.999%E2%80%A6「位數操作」的證明法是科普書最愛用的方法,一般大眾也能輕鬆領略其中的奧妙。「無窮級數和數列」是相對簡單又足夠嚴謹的證明法,高一程度就能看懂,數學成績不能太差就是了。無標題 名稱: 無名氏 [09/11/17(二)21:04 ID:nwsFw/6c] No.94896 >>No.94890 設 S(n) = (0.1)^n我們可以看到以下情況 :S(1) + 0.9 = 1S(2) + 0.99 = 1看看當x接近無限的時候會變成怎樣lim x->∞ S(x) + 0.999... = 11 - 0.999... = lim x->∞ S(x)= lim x->∞ (0.1)^x= 0 (這一步只要讀過lim的人都應當知道)當然,上面這個不是甚麼嚴謹的證明,只是隨手寫來給94890解惑而已無標題 名稱: 無名氏 [09/11/17(二)22:00 ID:WfkHCRd2] No.94907 因為:1/3 * 3=1又因為1/3 = 0.3333333(無限)0.3333333(無限) * 3 =0.999999999999(無限)所以0.999999999(無限)=1行,只要你能認定1/3不等于0.3333333(無限),1就不等于0.9999999(無限)無標題 名稱: 無名氏 [09/11/17(二)22:19 ID:pPd0CMpk] No.94915 檔名:1258467588928.jpg-(14 KB, 469x518) [以預覽圖顯示] 14 KB很久以前的印象不知道有沒有記錯無標題 名稱: 無名氏 [09/11/17(二)22:30 ID:./Gmacc.] No.94916 >>No.94915第一 你錯了兩個字第二 你所假設的第一式與第二式是我們所想要得到的結論無標題 名稱: 無名氏 [09/11/17(二)22:39 ID:jlLPs9Xc] No.94918 又在爭了...0.9循環本身就是極限會說0.9循環不等於1的阿基里斯追不上烏龜,球掉不到地板嗚啊啊0.9循環果然是禁句,不管到哪邊都能拿來婊人原PO請節哀無標題 名稱: 不是94915 [09/11/17(二)22:42 ID:RAzRNOLU] No.94919 >>No.9491610 x 0.999... - 0.999....=9.999.... - 0.999....=9(10-1) x 0.999... = 99 x 0.999... = 90.999... = 1沒設任何東西 好了嗎無標題 名稱: 無名氏 [09/11/18(三)00:20 ID:/crN0PSM] No.94950 我有問題!WIKI裡面有一句是這樣說的>一個實數可以有兩種不同的小數表示法,僅僅是兩個不同的實數集合可以有相同的最小上界的一個反映。 那麼......0呢?無標題 名稱: 無名氏 [09/11/18(三)02:49 ID:amCbZztw] No.94971 >>No.94919你假設了0.999.....*10=9.9999.....無窮小數直接作四則運算有答案並且跟直式的答案一樣這一件事情本身就需要證明如果你知道無窮小數是用來表示特殊的無窮級數的話應該就會想到這一點無標題 名稱: 無名氏 [09/11/18(三)04:17 ID:M/n9U.h6] No.94975 1 = 0.999999...Proof:Let x = 0.999999... <-----------------------| | 10x = 9.999999... Mult. both sides by 10 | -x = -0.999999... Subtract 1x from 10x | ------------------- | 9x = 9.000000... | | x = 1 Divide both sides by 9 | to solve for x. | Substituting for x above --------------------| 1 = 0.999999...來源:我電腦工程教授無標題 名稱: 無名氏 [09/11/18(三)04:32 ID:S9CeFULY] No.94977 設X=0.999999......10X=9.999999......(10X-X)/9=1=X所以推得X=1=0.999999999很簡單的國中數學 看不懂的在提問無標題 名稱: 無名氏 [09/11/18(三)05:13 ID:55WR8rNk] No.94984 突然想到0.9(循環),1-,1,1+,1.0(循環)1這五個數要如何比較?另外,用極限做的確0.9(循環) = 1然後印象中1-是不等於1的結果這時,我發現自己沒辦法講出0.9(循環)與1-的差異有高手能幫忙一下嗎?無標題 名稱: 無名氏 [09/11/18(三)08:19 ID:WN4gNeuw] No.94989 >>No.94977>設X=0.999999......>10X=9.999999......>(10X-X)/9=1=X>所以推得X=1=0.999999999>很簡單的國中數學 看不懂的在提問你的邏輯出了甚麼問題?設x = 0.333...3x = 2.333...(3x-x)/2=1=X <--喔喔所以推得X=1=0.333... <---我超強wwwwwwww這種假象跟No.94915沒甚麼差別 ~"~上面還有甚麼電腦工程是吧?無標題 名稱: 無名氏 [09/11/18(三)08:25 ID:BMpuguvY] No.94990 >>No.94989>3x = 2.333......-_-||||無標題 名稱: 無名氏 [09/11/18(三)08:45 ID:hGNIV7R2] No.94993 >>No.949500.00000...無標題 名稱: 無名氏 [09/11/18(三)08:48 ID:hGNIV7R2] No.94994 >>No.94989設x = 0.333...3x = 1(3X)/3=1/3=X 所以推得X=1/3=0.333... 有問題嗎?無標題 名稱: 無名氏 [09/11/18(三)09:04 ID:tMzoW17I] No.94995 >>No.94989>設x = 0.333...>3x = 2.333...………………這是哪個空間維度下的數學啊……無標題 名稱: 無名氏 [09/11/18(三)09:15 ID:hGNIV7R2] No.94996 >>No.94994腦殘了設x = 0.333...10x = 3.333...(10X-X)/9=3/9=1/3=X 所以推得X=1/3=0.333...無標題 名稱: 無名氏 [09/11/18(三)10:33 ID:BMpuguvY] No.95009 >>No.94907個人認為這個證明法比位移法要好>>No.94891這個說明已經很清楚0.99...不能加0.1,因為後面還有0.09...,加了就變成1.09...(比1大)0.999...不能加0.01,因為後面還有0.009...,加了就變成1.009...(比1大)0.9999...不能加0.001,因為後面還有0.0009...,加了就變成1.0009...(比1大)0.(n個9)9...不能加0.(n-1個0)1,因為後面還有0.(n個0)9...,加了就變成1.(n個0)9...(比1大)在永遠也找不到任意小的數0.(任意多的0)1使0.99...為1的情況下(加了都會比1大),0.999...實際上就是10.0...01不能當成0.001,因為0.0001比0.001更接近0.0...010.0...01不能當成0.0001,因為0.00001比0.0001更接近0.0...010.0...01不能當成0.00001,因為0.000001比0.00001更接近0.0...010.0...01不能當成0.(n個0)1,因為0.(n+1個0)1比0.(n個0)1更接近0.0...01不論取再小的數0.(任意多的0)1,也永遠無法代表0.0...01(因為永遠找得到更適合代表的數),因此0.0...01實際上就是0無標題 名稱: 無名氏 [09/11/18(三)10:52 ID:QmQr1JWY] No.95011 設X=0.333333......10X=3.333333......(10X-X)/9=1=X所以推得X=1=0.333333......很簡單的國中數學 看不懂的在提問更簡單的國小數學10/3 = 3...1100/3 = 33...11000/3 = 333...1每10倍,答案卻不只10倍,但餘數都一樣別自己把餘數鬼隱後,還來亂扯 1 = 0.9999...的概念無標題 名稱: 無名氏 [09/11/18(三)10:52 ID:M/n9U.h6] No.95012 >>No.94989>>這種假象跟No.94915沒甚麼差別 ~"~>>上面還有甚麼電腦工程是吧?對你來說是假象? 還是你只挑你喜歡的''真像''?就算是電腦工程的人說的,有錯嗎?>>"人類的科學技術永遠無法超越人類的想像力">>這句話幾乎可以視為定律?結論:還是有人類無法跟上科學無標題 名稱: 無名氏 [09/11/18(三)10:55 ID:QmQr1JWY] No.95013 補充一點無限多的"3",將會在餘數1的前面塞無限多個小數下的"0"無標題 名稱: 無名氏 [09/11/18(三)11:01 ID:QmQr1JWY] No.95014 >>No.95012你大概以為 x 跟 10x 就只有插在前面個位數的"9"而可以無視那"反正後面都是無限多個9",所以就讓無限多個"9"去減無限多個"9",於是後面等於"0"吧?無標題 名稱: 無名氏 [09/11/18(三)11:19 ID:BMpuguvY] No.95016 >>No.95011>10/3 = 3...1這個寫法方便,但並不標準 10/3 ≠ 3...1這部分要寫成 10 = 3×3 + 1或 10/3 = 3 + 1/3才能保持等式的完整性無標題 名稱: 無名氏 [09/11/18(三)11:49 ID:U15BhC86] No.95019 檔名:1258516169649.jpg-(93 KB, 494x372) [以預覽圖顯示] 93 KB看來人類的科學只能靠理論沒有想像力流言終結無標題 名稱: 無名氏 [09/11/18(三)11:54 ID:BMpuguvY] No.95020 >>No.95019no,人類的科學需要靠更高的想像力,科學太神奇了~~XD無標題 名稱: 無名氏 [09/11/18(三)12:18 ID:S9CeFULY] No.95023 >>No.95011>設X=0.333333......>10X=3.333333......>(10X-X)/9=1=X>所以推得X=1=0.333333......>很簡單的國中數學 看不懂的在提問慘了 閣下國小數學都不懂了0.333333......=1/3 (證明在No.94996)0.999999......=1 (證明在No.94977)我不明白你反諷0.3333333......=1是什麼意義無標題 名稱: 無名氏 [09/11/18(三)12:47 ID:S9CeFULY] No.95027 >>No.95014看得出來你還是不懂什麼叫做"無限"問你一個問題就知道了Q:無限+10000000000000000000000000000000000等於多少無標題 名稱: 無名氏 [09/11/18(三)12:51 ID:QmQr1JWY] No.95029 >>No.95023天啊 閣下國小數學有畢業!因為你知道 1 =\= 0.3333.....那......閣下又怎麼會認為 No.94977 合理呢?A.10X - X = 9.999... - 0.999...9X = 9.00...B.X * 9 = 0.99.9.. * 99X = = 8.999.....1兩個9X的不同你看見了嗎?不過 8.999....基本上我是永遠也看不到那個"1"無標題 名稱: 無名氏 [09/11/18(三)12:54 ID:QmQr1JWY] No.95030 >>No.95027嗯......上面有貼出wiki的連結了我建議你可以先去看看 ^^無標題 名稱: 無名氏 [09/11/18(三)13:02 ID:BMpuguvY] No.95032 >>No.950298.999...91 = 8 + 0.(n個9)9 + 0.(n+1個0)1 (n為任意大)根據我那精美的>>No.950098 = 80.(n個9)9 = 1 (n為任意大)0.(n+1個0)1 = 0 (n為任意大)故8.999...91 = 8 + 0.(n個9)9 + 0.(n+1個0)1 = 8+1+0 = 9 (n為任意大)各位繼續(‵?ω?)無標題 名稱: 無名氏 [09/11/18(三)13:25 ID:S9CeFULY] No.95036 >>No.95029真是可悲 當正面迎擊不過別人時就開始走偏門了請你先說明A哪邊錯誤了 我先說說B好了>X * 9 = 0.99.9.. * 9>9X = = 8.999.....1請問你的「9X = = 8.999.....1」結尾的那個1是從哪裡得到的呢別跟我說是因為9*9=81得來的喔 我會笑妳數學還停留在國小時的階段無限的概念就是無限 他沒有盡頭 也就是說那個結尾是1或2或3或4或5或6或7或8或9通通都不對他就是8.9999...........沒有結尾 因為它就是無限 不可量化 不可估計無標題 名稱: 無名氏 [09/11/18(三)13:29 ID:S9CeFULY] No.95037 >>No.95036接下對了,9=8.9999......這個有需要我在教你一次嗎(笑)無標題 名稱: 無名氏 [09/11/18(三)13:32 ID:.nOWgrY6] No.95038 樓上引用wiki說那個是"0.99..... = 1"的你還沒定義你的"1"到底是什麼datatype....所以你還是Epic faileddouble i,j; i = 1; j = GetInfini0.99();i = j; // falsereal f,k; f = 1; k = GetInfini0.99();f = k; //true無標題 名稱: 無名氏 [09/11/18(三)13:46 ID:L6iPHPCY] No.95043 看到了終於看到了反對一邊 堅持以有限的數 論無限的數請先看證明前的條件設定 這是必要的離開條件 說那證明有沒有問題是沒意義的無標題 名稱: 無名氏 [09/11/18(三)13:52 ID:eYA.UtcQ] No.95046 媽的, .9999.... = 1 這題目究竟還要 "流言化" 多久新流言, 1 + 1/4 + 1/9 + 1/16 + 1/25 + ... = (pi)^2 /6無標題 名稱: 唉 [09/11/18(三)13:59 ID:hGNIV7R2] No.95047 如果1大於 0.999 ....存在A 使得0.999 ....+A = 1A是甚麼?無標題 名稱: 無名氏 [09/11/18(三)14:04 ID:BMpuguvY] No.95048 >>No.95047A = 0 (>>No.95009)無標題 名稱: 唉 [09/11/18(三)14:10 ID:hGNIV7R2] No.95049 >>No.95046by sandwich theorem compare tan[k/(2n+1)] ,k/(2n+1) & sin[k/(2n+1)]無標題 名稱: 唉 [09/11/18(三)14:13 ID:hGNIV7R2] No.95051 >>No.95049compare tan[k pi/(2n+1)] ,k pi/(2n+1) & sin[k pi/(2n+1)]無標題 名稱: 無名氏 [09/11/18(三)15:02 ID:S9CeFULY] No.95056 >>No.95047>如果1大於 0.999 ....請問這個「如果」是從哪邊得來的結果?無標題 名稱: 無名氏 [09/11/18(三)15:24 ID:L6iPHPCY] No.95060 >95056這裡有問題的不是他而是問問題的你無標題 名稱: 無名氏 [09/11/18(三)15:40 ID:S9CeFULY] No.95062 >>No.95060那我問你如果1+1=3的話,那2+2=?無標題 名稱: 無名氏 [09/11/18(三)15:45 ID:BMpuguvY] No.95064 >>No.95062在回答這個問題之前,你必須先說明你採用的算術法則無標題 名稱: 無名氏 [09/11/18(三)15:47 ID:oHB/5fPM] No.95065 >>No.95036>無限的概念就是無限 他沒有盡頭 也就是說那個結尾沒錯,所以你就知道在無限的概念中"1 絕對不等於 0.99....."請不要自打嘴巴 ^^無標題 名稱: 無名氏 [09/11/18(三)16:02 ID:tINrz24c] No.95067 0.9999....個媽媽跟0.9999....個爸爸生下0.9999....個小孩小孩上了0.9999....年級之後上國0.9999....之後再上高0.9999....如今是大0.9999....的學生同時在K島上發表0.9999....=0.9999....的言論無標題 名稱: 無名氏 [09/11/18(三)16:20 ID:yp/mJYNo] No.95071 >>No.95065天啊,這年頭還有人相信亞基里斯會跑輸烏龜「無限的數列」的運算是可能等於整數的最簡單的例子是1/2 + 1/4 + 1/8 + ... = 1如果連這個基本的無窮級數和絕對收斂序列的概念也不懂就別跟人爭論0.999...是否等於1無標題 名稱: 無名氏 [09/11/18(三)16:35 ID:BMpuguvY] No.95072 >>No.95071有人還打算拿 1+1/2+1/4+1/8+1/16+....=2 來回電教授...無標題 名稱: 無名氏 [09/11/18(三)16:41 ID:.nOWgrY6] No.95076 0.99.... = 1 是建基於在自然數中一個無限小的誤差是可以被無視的(因為沒有比無限小更小的東西)但假設今天我們有一部無限處理能力和無限記憶能力的個體(可以是人可以電腦或其他東西),問題就變成了:這個無限小的差異到底是不是冀的可以無視呢?無標題 名稱: 無名氏 [09/11/18(三)16:46 ID:zqAZOWKg] No.95079 這串該收精嗎 +這串該收精嗎 ||2(這串該收精嗎?)無標題 名稱: 無名氏 [09/11/18(三)16:50 ID:lkrSzIHI] No.95081 話說...原PO的問題應該不是0.(9)=1吧怎麼到後面變成討論這個= =?無標題 名稱: 無名氏 [09/11/18(三)17:01 ID:S9CeFULY] No.95083 >>No.95065你要不要把國文練練再來呢^^" 我從你的話中完全無法理解你怎麼得到「無限的概念中1 絕對不等於 0.99.....」這個結論呢國文不好也沒關係 不然至少把證明拿出來吧我已經提出B點的錯誤了 麻煩你反駁No.94977 這個證明到底哪邊錯誤呢無標題 名稱: 無名氏 [09/11/18(三)17:17 ID:S9CeFULY] No.95089 >>No.95076>一部無限處理能力和無限記憶能力的個體(可以是人可以電腦或其他東西)不不...你講的這些東西還是"有限"當你把「無限」這個東西量化的話就不叫無限了我口才不好 這些話僅能表達部份的概念 聽不懂就算了無限+無限+無限還是等於無限今天一個東西能處理「無限」的東西但這個「無限」能夠被人或電腦處理時,那個「無限」就變成了有限一部電腦或人腦處理了無限個資訊後 但「無限」後還有無限個「無限」也就是「無限」+「無限」+「無限」+「無限」+..........!@!%@^&!%@^%&^%&說不下去了 我在講什麼我自己都聽不太懂了XD無標題 名稱: 無名氏 [09/11/18(三)17:18 ID:aqdsEBQM] No.95090 這讓我想到(先說,這是一個很偏激且極端的假設)設A廠商向B廠商購入極為小且極精密的儀器,並且要求該儀器只能重0.(9)毫克B廠商與A廠商就這麼簽訂了契約。事後,B廠商認為,所謂的0.(9)毫克和1毫克相等,所以做了1毫克的商品交差,於是A廠商當場拿出了精密度達千萬位的儀器作測量,顯示出這是一個1.00000000000(?)毫克的產品。於是A廠商非常憤怒的要求B廠商依照契約內容做出0.(9)毫克的產品,B廠商則揚言做不出來,因為0.(9)毫克就相等於一毫克,要求A廠商接受並繳款。於是A廠商認為依我國民法第256條來說,決定取消契約,B廠商一怒之下告上法院。請問此時該怎麼判?依照第四條第五條來說,都是講求當事人原意。那麼A堅持要得到他的儀器上會是0.(9)毫克的商品,原意即不等於1毫克。該怎麼判?無標題 名稱: 無名氏 [09/11/18(三)17:21 ID:cjGokgMw] No.95091 >>No.95011>X=0.333333......>10X=3.333333......>(10X-X)/9=1=X>所以推得X=1=0.333333......出現了,國小除法沒畢業的無標題 名稱: 無名氏 [09/11/18(三)17:23 ID:BMpuguvY] No.95092 >>No.95076>>No.95090請參考>>No.95047和>>No.950480.999...和1之間並不存在所謂的差值兩者唯一的不同是表示法1.000...01亦同無標題 名稱: 無名氏 [09/11/18(三)17:25 ID:aqdsEBQM] No.95093 >>No.95092表示方法即是問題所在。我國的法律很講求契約上的自由。也就是說,A廠商若無論如何都堅持他要看到0.(9)毫克的商品,B廠商則無論如何都認為1=0.(9)何解?0.999… 維基百科,自由的百科全書 跳轉到: 導航, 搜尋
rtwet
留言列表